Formula	Description
$V=\frac{1}{3} B h$	Volume of a right cone and a pyramid
$V=B h$	Volume of a cylinder and prism
$V=\frac{4}{3} \pi r^{3}$	Volume of a sphere
$A=2 \pi r h+2 \pi r^{2}$	Surface area of a cylinder
$A=4 \pi r^{2}$	Surface area of a sphere
$A=\pi r \sqrt{r^{2}+h^{2}}=\pi r \ell$	Lateral surface area of a right circular cone
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$	Distance formula
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	Midpoint formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	Quadratic formula
$S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]=\frac{n\left(a_{1}+a_{n}\right)}{2}$	Sum of an arithmetic series
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$	Sum of geometric series
$\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r},\|r\|<1$	Sum of an infinite geometric series
\bar{A} is the complement of set A	Set theory
${ }_{n} P_{r}=P(n, r)=\frac{n!}{(n-r)!}$	Permutations
${ }_{n} C_{r}=C(n, r)=\frac{n!}{(n-r)!r!}$	Combinations
$z=\frac{x-\bar{x}}{s}$	Standard score
$P(t)=P(1+r)^{t}$	Compound interest

