NOTES FOR SCIENCE—PHYSICS TEST

In questions on electricity and magnetism, the term current refers to "conventional current," which is the flow of charge from positive to negative, and the use of right-hand rules is assumed.

While attention has been paid to significant figures, no answer should be considered incorrect solely because of the number of significant figures unless specifically stated in the question.

CONSTANTS

Description	Value
Acceleration of gravity on Earth (g)	$9.80 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum (c)	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Planck's constant (h)	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Electron rest mass	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton rest mass	$1.67 \times 10^{-27} \mathrm{~kg}$
Charge of electron	$-1.60 \times 10^{-19} \mathrm{C}$
Coulomb's constant $\left(k_{e}\right)$	$9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Boltzmann's constant (k)	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Gas constant (R)	$8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
Gravitational constant (G)	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Permeability of free space $\left(\mu_{0}\right)$	$4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
Avogadro's number	6.02×10^{23}

Angle ($\boldsymbol{\theta})$	$\sin \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \theta}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$
30°	0.500	0.866	0.577
45°	0.707	0.707	1.00
60°	0.866	0.500	1.73

FORMULAS

Not all formulas necessary are listed, nor are all formulas listed used on this test.

Description	Formula
Constant acceleration	$v_{f}=v_{i}+a t$
	$x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}$
	$v_{f}{ }^{2}-v_{i}{ }^{2}=2 a\left(x_{f}-x_{i}\right)$
	$v_{\text {avg }}=\frac{v_{i}+v_{f}}{2}$
Circular motion	$\mathrm{a}_{c}=\frac{v^{2}}{r}$
	$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
	$\omega_{f}=\omega_{i}+\alpha t$
	$v=r \omega$
	$a=r \alpha$
	$\tau=I \alpha$
	$F=\frac{G m_{1} m_{2}}{r^{2}}$
Spring	$F=-k x$
	$U_{S}=\frac{1}{2} k x^{2}$
	$T=2 \pi \sqrt{\frac{m}{k}}$
	$\omega=\sqrt{\frac{k}{m}}$
Pendulum	$T=2 \pi \sqrt{\frac{L}{g}}$
Relativity	$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
	$v^{\prime}=\frac{u+v}{1+\frac{u v}{c^{2}}}$

FORMULAS (continued)

Description	Formula
Speed of a wave	$v=f \lambda$
Speed of waves in a string	$v=\sqrt{\frac{T}{\mu}}$
Standing wave condition for a string fixed at both ends	$2 L=n \lambda, n$ is an integer
Standing wave condition for a string fixed at one end	$4 L=n \lambda, n$ is odd
Optics	$\begin{aligned} & n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\ & n=\frac{c}{v} \end{aligned}$
	$\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}$
Thermodynamics	$T_{k}=T_{c}+273$
	$\Delta U=n c_{v} \Delta T$
	$Q=m c \Delta T$
	$P V=n R T$
	$\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T$
Fluids	$P=\rho g h+P_{0}$
Electrostatics	$F=\left\|\frac{k_{e} q_{1} q_{2}}{r^{2}}\right\|$
	$F=q E$
	$U_{E}=q V$
	$V=\frac{k_{e} q}{r}$

FORMULAS (continued)

Description	Formula
Magnetism	$\mathbf{F}=q \mathbf{v} \times \mathbf{B}$
	$F=q v B \sin \theta$
	$\mathbf{F}=I \boldsymbol{l} \times \mathbf{B}$
	$F=I \ell B \sin \theta$
	$\varepsilon_{\mathrm{avg}}=-\frac{\Delta \phi}{\Delta t}$
	$\phi=B_{\perp} A$
Circuits	$V=I R$
	$P=I V$
	$C=\frac{Q}{V}$
	$U_{C}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}$
	$\varepsilon=-L \frac{d l}{d t}$
	$\omega_{0}=\frac{1}{\sqrt{L C}}$
Photoelectric effect	$e V_{s}=h f-\phi$
Wave-particle relations	$\Delta p \Delta x \geq \frac{h}{4 \pi}$
	$E=h f$
	$\lambda=\frac{h}{p}$

