## CONSTANTS

| Description                            | Value                                                   |
|----------------------------------------|---------------------------------------------------------|
| Standard atmospheric pressure          | 1 atm = 760 mm Hg = 760 torr = 101.325 kPa              |
| Speed of light in a vacuum (c)         | 3.00 × 10 <sup>8</sup> m/s                              |
| 1 calorie (cal)                        | 4.184 J                                                 |
| 1 watt (W)                             | 1 J/s                                                   |
| Acceleration of gravity on Earth $(g)$ | 9.80 m/s <sup>2</sup>                                   |
| Coulomb's constant (k <sub>e</sub> )   | 8.99 × 10 <sup>9</sup> N•m <sup>2</sup> /C <sup>2</sup> |
| Gravitational constant (G)             | 6.67 × 10 <sup>-11</sup> N•m²/kg²                       |
| Avogadro's number (N <sub>A</sub> )    | 6.02 × 10 <sup>23</sup> particles/mole                  |
| Density of water ( $\rho_w$ )          | $1.00 \times 10^3 \text{ kg/m}^3$                       |

## FORMULAS

| Description    | Formula               |
|----------------|-----------------------|
| Coulombs (C)   | C = amperes × seconds |
| Speed of light | $c = \lambda v$       |
| Hertz (Hz)     | $Hz = \frac{1}{s}$    |
| Density        | $D = \frac{m}{v}$     |

# FORMULAS (continued)

#### **Force and Motion**

| Description                                            | Formula                         |
|--------------------------------------------------------|---------------------------------|
| Constant acceleration formula with respect to time     | $v_f = v_i + at$                |
| Constant acceleration formula with respect to distance | $v_f^2 - v_i^2 = 2a(x_f - x_i)$ |
| Newton's 2nd law                                       | ∑ <b>F</b> = <i>m</i> <b>a</b>  |
| Law of universal gravitation                           | $F = \frac{Gm_1m_2}{r^2}$       |

#### Energy, Momentum, and Heat Transfer

| Description      | Formula                         |
|------------------|---------------------------------|
| Work             | W = Fd                          |
| Power            | $P = \frac{\Delta W}{\Delta t}$ |
| Kinetic energy   | $KE = \frac{1}{2}mv^2$          |
| Potential energy | PE = mgh                        |
| Momentum         | $\mathbf{p} = m\mathbf{v}$      |

### **Electricity and Magnetism**

| Description          | Formula                                         |
|----------------------|-------------------------------------------------|
| Resistance in series | $R_{\rm S} = R_1 + R_2$                         |
| Resistance parallel  | $\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$ |
| Ohm's law            | V = IR                                          |
| Electrical power     | P = IV                                          |

| Description                 | Formula                       |
|-----------------------------|-------------------------------|
| Period of a pendulum        | $T = 2\pi \sqrt{\frac{L}{g}}$ |
| Speed of a wave             | $v = f\lambda$                |
| Speed of a wave on a string | $v = \sqrt{\frac{T}{\mu}}$    |

#### **Mathematics**

(*a*, *b*) denotes a vector with an *x*-component of *a* and a *y*-component of *b*.

## NOTES FOR MIDDLE SCHOOL SCIENCE TEST

Not all constants and formulas necessary are listed, nor are all constants and formulas listed used on this test.

While attention has been paid to significant figures, no answer should be considered incorrect solely because of the number of significant figures.

In questions on electricity and magnetism, the term *current* refers to "conventional current" and the use of the right-hand rule is assumed.