INDIANA CORE ASSESSMENTS FOR EDUCATOR LICENSURE

FIELD 070: MIDDLE SCHOOL MATHEMATICS

TEST FRAMEWORK

September 2020

Domain		Range of Objectives	Approximate Percentage of Test Score
I.	Number Sense and Computation	0001–0002	24%
II.	Algebra and Functions	0003–0006	34%
III.	Measurement and Geometry	0007–0009	14%
IV.	Probability, Statistics, and Calculus	0010–0012	14%
V.	Instruction and Assessment	0013	14%

INDIANA CORE ASSESSMENTS FOR EDUCATOR LICENSURE

FIELD 070: MIDDLE SCHOOL MATHEMATICS

TEST FRAMEWORK

Number Sense and Computation Algebra and Functions Measurement and Geometry Probability, Statistics, and Calculus Instruction and Assessment

NUMBER SENSE AND COMPUTATION

0001 Understand the structure and properties of number systems.

- Recognize the hierarchy of the real and complex number systems, their classification into various subsets, and properties of number systems (e.g., commutative, distributive, associative, inverse and identity elements, closure).
- Reason about the ordering and absolute value of real numbers.
- Apply and extend understanding of the place value system to represent, estimate, and perform operations on rational numbers in a variety of forms (e.g., graphic, numerical, physical, symbolic).
- Justify and apply order of operations to real and complex numbers.
- Apply and extend understanding of prime and composite numbers, divisibility, least common multiples, and greatest common factors to model and solve mathematical and real-world problems.
- Apply and analyze standard and nonstandard algorithms for operations on decimals, fractions, integers, and other real numbers.
- Model and solve mathematical and real-world problems using scientific notation and the properties of integer exponents.
- Apply basic properties of matrices, matrix arithmetic, vectors, and vector arithmetic.

0002 Understand rational numbers, ratios, and proportional relationships.

For example:

- Use benchmark numbers, number sense, properties, and rounding to estimate mentally and assess the reasonableness of solutions to mathematical and real-world problems.
- Solve mathematical and real-world problems involving positive and negative rational numbers using a variety of methods.
- Use equations, area models, tiles, diagrams, and other visual and physical models to represent fractions and to perform arithmetic operations on fractions.
- Use visual models and strategies based on place value and properties of operations to solve problems involving conversions between fractions, percentages, repeating decimals, and terminating decimals.
- Apply proportionality, rates, ratios, and unit rates to solve problems involving discounts and markups, interest, percent increase and decrease, taxes, tips, and other real-world situations.

ALGEBRA AND FUNCTIONS

0003 Understand algebraic expressions, equations, and inequalities.

- Translate between algebraic, graphic, numerical, symbolic, tabular, and verbal descriptions that represent mathematical and real-world situations.
- Evaluate absolute value, exponential, linear, quadratic, rational, and square root algebraic expressions for a given value of a variable and express one variable in terms of another variable.
- Manipulate and simplify absolute value, exponential, linear, quadratic, rational, and square root algebraic expressions and solve related equations and inequalities.
- Use algebraic expressions, equations, and inequalities with rational coefficients to model and solve mathematical and real-world problems.
- Solve algebraic equations and inequalities having one, multiple, infinitely many, extraneous, or no solutions.
- Justify algebraic techniques using the properties of real numbers.

0004 Understand algebraic relations and functions.

For example:

- Use algebraic, graphic, tabular, and verbal representations to describe relationships between quantities and to analyze and distinguish between relations and functions.
- Use patterns, relations, sequences, and series (e.g., Fibonacci, arithmetic, geometric) to model and solve mathematical and real-world problems.
- Generate and interpret equations, graphs, tables, and other representations of real-world situations and translate between them.
- Analyze, describe, and solve linear and nonlinear mathematical and realworld situations using addition, subtraction, multiplication, division, and composition of functions.
- Identify the effects of transformations such as f(x + k), f(x) + k, and k(f(x)) on the graphs of linear and nonlinear functions, where k is a real number.

0005 Understand linear relations and functions.

- Analyze connections between direct variation, constants of proportionality, linear models, proportional relationships, and rates of change and use these connections to build linear functions.
- Analyze the relationship between the equation of a line and its graph and interpret slope and intercepts in mathematical and real-world situations.
- Determine the equation of a line in slope-intercept, standard, and pointslope forms from various types of information (e.g., graphs, one point and slope, two points).
- Use elimination, graphing, and substitution for solving systems of linear equations and inequalities.
- Apply knowledge of linear equations, functions, inequalities, and systems and slope of a line to analyze, model, and solve real-world problems and situations.

0006 Understand nonlinear relations and functions.

For example:

- Identify, express, and apply patterns of change created by exponential, inversely proportional, and quadratic situations.
- Translate between algebraic, graphic, tabular, and verbal descriptions of exponential, inversely proportional, and quadratic functions.
- Analyze absolute value, exponential, logarithmic, polynomial, rational, and trigonometric functions and relations with respect to continuity, domain, end behavior, extrema, inverse, range, and other characteristics.
- Use completing the square, the discriminant, factoring, graphing, and the quadratic formula to model and solve problems involving quadratic relations and functions (e.g., conic sections).
- Use exponential functions to model and solve problems involving population growth, compound interest, half-life, and other exponential growth and decay situations.

MEASUREMENT AND GEOMETRY

0007 Understand units and measurement.

- Extend knowledge of quantities and units to compare and convert within and between measurement systems and use these conversions in solving real-world problems.
- Solve problems involving derived units.
- Analyze the effect of measurement error and rounding on computed quantities.
- Solve mathematical and real-world problems using angles, area, length, perimeter, surface area, and volume to find measures of two- and threedimensional figures and composite shapes.
- Analyze the effect of changing linear dimensions on measures of length, area, and volume.
- Use concepts of congruence, indirect measurement, proportional and spatial reasoning, and similarity to analyze and solve mathematical and real-world problems.
- Apply the Pythagorean theorem, right triangle trigonometry, and special right triangle relationships to solve mathematical and real-world problems.
- Apply periodic phenomena and trigonometric identities.

0008 Understand Euclidean geometry.

For example:

- Use properties and theorems about angle pairs, parallel lines, and perpendicular lines to characterize geometric relationships and solve problems.
- Use properties of sides, angles, and diagonals to analyze and justify relationships between triangles, quadrilaterals, and other polygons and use these relationships to solve mathematical and real-world problems.
- Use properties and theorems about circles to solve mathematical and real-world problems involving arc lengths, tangents, angle measures, and other circle measurements.
- Use knowledge of the axiomatic structure of Euclidean geometry to analyze and prove theorems.
- Analyze and compare the properties and measurements of circular cones, circular cylinders, hemispheres, prisms, pyramids, and spheres.

0009 Understand Cartesian coordinate and transformational geometry.

- Use concepts of distance, midpoint, slope, and parallel and perpendicular lines to classify, represent, and analyze triangles, quadrilaterals, circles, and other geometric figures in the coordinate plane.
- Analyze dilations, translations, rotations, and reflections of figures in twodimensional coordinate space.
- Analyze the effects of transformations on figures with respect to congruence, similarity, and symmetry.
- Use coordinate and transformational geometry to evaluate logical arguments and mathematical conjectures and to prove theorems and solve problems.
- Use coordinate geometry techniques to model and solve mathematical and real-world problems involving two- and three-dimensional figures.

PROBABILITY, STATISTICS, AND CALCULUS

0010 Understand probability.

For example:

- Use and interpret organized lists, sample spaces, tables, tree diagrams, Venn diagrams, and other representations for situations involving probability.
- Compute theoretical probabilities for simple and compound events using addition rules, multiplication rules, and other approaches.
- Select simulations to generate frequencies and experimental probabilities for simple and compound events.
- Use combinations and permutations to represent and solve mathematical and real-world problems involving probability.

0011 Understand statistics.

- Construct and interpret scatter plots to investigate patterns of association between two quantities, interpret and estimate correlation coefficients, and solve problems involving linear regression models.
- Construct and interpret frequency distributions, tables, bar charts, circle graphs, dot plots, stem-and-leaf plots, box plots, and histograms.
- Describe and summarize numerical data sets by identifying clusters, modes (e.g., peaks), gaps, and symmetry and by considering the context in which the data were collected.
- Use mean, median, interquartile range, and standard deviation to make comparisons.
- Evaluate experiments, observational studies, and sampling procedures in terms of bias, randomization, sample size, and other methods for gathering and organizing data.

0012 Understand calculus.

For example:

- Apply the concepts of limits and continuity to analyze functions and their graphs.
- Use the relationships between derivatives, slopes, and rates of change to model and solve mathematical and real-world problems.
- Use derivatives to find maxima, minima, points of inflection, and concavity of curves.
- Find antiderivatives, evaluate integrals, and apply the Fundamental Theorem of Calculus to find the area under a curve.
- Apply the concepts of differentiation and integration to model and solve mathematical and real-world problems.

INSTRUCTION AND ASSESSMENT

0013 Understand content and process standards and instructional strategies.

- Identify and analyze appropriate mathematics instructional strategies and skills using state and national standards.
- Support the learning of all students by using materials, pacing, student interest, student engagement, and methods for differentiating instruction to make mathematics content accessible.
- Apply a variety of strategies and communication methods that promote critical thinking; foster inquiry, interaction, and collaboration; and improve, deepen, and broaden understanding of the mathematics curriculum.
- Use standards-based instruction and assessment to develop and evaluate middle school mathematics lessons.
- Select and create high-quality curricula and materials that match students' needs and educational goals.
- Use formal and informal assessment to plan, implement, and evaluate effective instruction.
- Select and integrate appropriate technology to engage students in solving authentic problems and to facilitate learning, creativity, and innovation.