

Field 044: Science—Earth/Space Science Assessment Blueprint

Domain I—Foundations of Science

0001 The Nature and Processes of Science (Standard 1)

0002 Central Concepts and Connections in Science (Standard 2)

Domain II—Astronomy

0003 Stars, Galaxies, and the Universe (Standard 3)

0004 Earth and the Solar System (Standard 4)

Domain III—Geology

0005 Earth's Origin, Evolution, and Structure (Standard 5)

0006 Earth Processes and Materials (Standard 6)

0007 Biogeochemical Cycles, Geologic Resources, and the Environment (Standard 9)

Domain IV-Hydrology, Oceans, Weather, and Climate

0008 Freshwater Systems and the Oceans (Standard 7)

0009 The Atmosphere, Weather, and Climate (Standard 8)

Domain V—Science Instruction and Assessment

0010 Science Instruction and Assessment (Standard 10)

	Domain	Objectives	Standards	Approximate Test Weight
1.	Foundations of Science	0001–0002	1–2	10%
H.	Astronomy	0003-0004	3–4	20%
III.	Geology	0005–0007	5–6, 9	36%
IV.	Hydrology, Oceans, Weather, and Climate	0008-0009	7–8	24%
٧.	Science Instruction and Assessment	0010	10	10%

Standard 1: The Nature and Processes of Science

Earth and space science teachers have a broad and comprehensive understanding of the nature of science and the processes of scientific inquiry, including:

- **1.1** the characteristics, assumptions, and goals of science
- 1.2 the tentative nature of scientific knowledge, which is subject to change as new evidence, new tools, or new ways of thinking become available
- 1.3 the formulation of testable hypotheses and the principles and procedures for designing and conducting scientific investigations
- 1.4 common tools, materials, and technology used in Earth and space science investigations
- <u>1.5</u> the collection, organization, analysis, interpretation, and communication of scientific data, including the use of technology
- **1.6** the safe execution of laboratory exercises and safe storage and disposal of chemicals and materials
- 1.7 the role and applications of mathematics in science
- 1.8 the characteristics and uses of various sources of scientific information and the evaluation of scientific information, claims, and arguments
- **1.9** the role of peer review and critical evaluation of the results of scientific investigations, models, and explanations

Standard 2: Central Concepts and Connections in Science

Earth and space science teachers have a comprehensive understanding of the core ideas in other science disciplines and of the relationships between science, engineering, technology, and society, including:

- **2.1** the unifying concepts and processes that cut across the sciences and engineering
- 2.2 the basic concepts and major principles of physical science
- 2.3 the basic concepts and major principles of life science
- 2.4 the basic characteristics, principles, and goals of the engineering, or technological, design process
- 2.5 the interconnections between the various disciplines of science
- 2.6 the interrelationships between science and technology
- 2.7 the social, cultural, and ethical aspects of science and technology
- 2.8 the historical development of important ideas in science from different periods and cultures

Standard 3: Stars, Galaxies, and the Universe

Earth and space science teachers have a broad and comprehensive understanding of the origin, structure, and components of the universe, including:

- 3.1 the Big Bang theory of the universe's origin, evidence supporting the Big Bang theory, the scale and evolution of the universe, and Hubble's law
- **3.2** the Hertzsprung-Russell diagram, characteristics and life cycles of different types of stars, and the nucleosynthesis of elements
- 3.3 characteristics of supernovae, black holes, white dwarfs, and neutron stars
- 3.4 characteristics and formation of different types of galaxies
- <u>3.5</u> the role of gravity in the formation of stars and galaxies
- <u>3.6</u> characteristics of different types of telescopes and the principles and applications of spectroscopy

Standard 4: Earth and the Solar System

Earth and space science teachers have a broad and comprehensive understanding of the solar system and the sun-moon-Earth system, including:

- 4.1 the nebular theory of the solar system's origin, planetesimals, and protoplanets
- 4.2 asteroids, comets, the Oort cloud, the Kuiper belt, and the asteroid belt
- 4.3 the composition, orientation, and orbital characteristics of the planets and their moons
- 4.4 Earth's place in the solar system, its orbit, axial rotation, and planetary characteristics
- 4.5 the sun-moon-Earth system and its relationship to ocean tides, seasons, day length, and Earth's energy budget
- 4.6 solar and lunar eclipses, the phases of the moon, and the origin and characteristics of the moon
- 4.7 the apparent motion of objects in the sky and the celestial sphere model
- 4.8 the role of gravity in the formation of the solar system, Newton's laws, and Kepler's laws of planetary motion

Standard 5: Earth's Origin, Evolution, and Structure

Earth and space science teachers have a broad and comprehensive understanding of the origin, evolution, and structure of Earth, including:

- <u>5.1</u> origin of Earth in the early solar system and the evolution of the hydrosphere, atmosphere, lithosphere, and biosphere
- <u>5.2</u> Earth's internal structure and the properties and physical and chemical characteristics of Earth's layered interior
- **5.3** the use of seismology in the study of Earth's interior
- 5.4 the properties and source of Earth's magnetic field and its effect on other Earth systems
- <u>5.5</u> the geologic time scale, the fossil record, and the principles and applications of modern evolutionary theory
- 5.6 the principles and applications of radiometric dating, relative dating, and stratigraphy
- **<u>5.7</u>** the geologic history of Indiana

Standard 6: Earth Processes and Materials

Earth and space science teachers have a broad and comprehensive understanding of the physical and chemical processes that shape Earth's surface and the materials that Earth is composed of, including:

- <u>6.1</u> the characteristics, identification, and composition of rocks and minerals, including the rocks and minerals of Indiana
- <u>6.2</u> interactions between the hydrosphere, atmosphere, lithosphere, and biosphere
- **6.3** the theory of and supporting evidence for plate tectonics
- <u>6.4</u> processes involved in the formation of igneous, metamorphic, and sedimentary rocks
- **6.5** different types of igneous activity and volcanism
- <u>6.6</u> earthquakes, geologic faulting, and folding
- **6.7** weathering, erosion, and deposition
- 6.8 glacial processes and the effects of continental glaciations on Indiana and the Great Lakes region
- **6.9** soil formation processes and the characteristics of different soil types, including the soils of Indiana

Standard 7: Freshwater Systems and the Oceans

Earth and space science teachers have a broad and comprehensive understanding of the hydrosphere, including:

- 7.1 the physical and chemical properties of water
- 7.2 freshwater lakes, ponds, and wetlands
- <u>7.3</u> groundwater aquifers, watersheds, and groundwater flow processes
- <u>7.4</u> the evolution and characteristics of river systems under different geographic conditions
- 7.5 the characteristics and evolution of ocean basins
- 7.6 the physical and chemical properties of ocean water
- 7.7 characteristics of surface currents and thermohaline circulation
- **7.8** characteristics of ocean waves and coastal processes
- 7.9 surface water and groundwater systems in Indiana and the Great Lakes region

Standard 8: The Atmosphere, Weather, and Climate

Earth and space science teachers have a broad and comprehensive understanding of the atmosphere, weather, and climate, including:

- **8.1** the structure, composition, and properties of the atmosphere's different layers
- **8.2** the processes of energy transfer to and within the atmosphere
- **8.3** the physical and biological characteristics of the world's different climate regions
- 8.4 the global climate system, changes in climate over geologic time, and recent climate change
- **8.5** weather systems, air masses, fronts, the polar-front and subtropical jet streams, air pressure, and local and global winds
- **8.6** thunderstorms, tornadoes, middle latitude cyclones, hurricanes, and other types of severe weather
- **8.7** weather conditions and events that commonly affect Indiana, including lake-effect snow and blizzards
- **8.8** weather maps, computer models, and the tools and technologies used in meteorology and climatology

Standard 9: Biogeochemical Cycles, Geologic Resources, and the Environment

Earth and space science teachers have a broad and comprehensive understanding of the cycling of matter through biogeochemical cycles, the use and management of geologic resources, and the effects of human activities on the environment, including:

- **9.1** the physical and chemical processes of the carbon cycle and its relationship to human activities, the climate system, and ocean chemistry
- 9.2 the phosphorus and nitrogen cycles and their relationship to human activities and the biosphere
- <u>9.3</u> the formation, extraction, use, and management of mineral resources and fossil fuels, including those found in Indiana and the surrounding region
- **9.4** the scientific principles underlying the use and development of solar energy, geothermal energy, and wind energy
- 9.5 the environmental effects of human activities on local and global scales

Standard 10: Science Instruction and Assessment

Earth and space science teachers have a broad and comprehensive understanding of contentspecific instruction and assessment in science, including:

- 10.1 the Indiana Revised Academic Standards for Science
- 10.2 the National Science Education Standards, the NCATE/NSTA Standards for Science Teacher Preparation, the Common Core State Standards for Literacy: Science and Technical Subjects, and the ISTE National Educational Technology Standards
- 10.3 instructional strategies and resources for promoting students' development of conceptual understanding, inquiry skills, and scientific habits of mind
- **10.4** strategies and skills for planning and designing science instruction, including the use of techniques and approaches that meet the needs of diverse learners
- <u>10.5</u> instructional strategies and communication methods that encourage active inquiry, supportive interaction, and collaboration in the science classroom
- 10.6 strategies and resources for promoting students' reading, writing, and mathematics skills in science
- **10.7** strategies and skills for selecting, adapting, and using technological resources to enhance teaching and learning in science
- 10.8 procedures, resources, and guidelines for maintaining a safe science learning environment
- 10.9 strategies and skills for effectively assessing student understanding and mastery of essential science concepts and skills