MATHEMATICS FORMULAS

Formula	Description
$V = \frac{1}{3}Bh$	Volume of a right cone and a pyramid
V = Bh	Volume of a cylinder and prism
$V = \frac{4}{3}\pi r^3$	Volume of a sphere
$A = 2\pi r h + 2\pi r^2$	Surface area of a cylinder
$A = 4\pi r^2$	Surface area of a sphere
$A = \pi r \sqrt{r^2 + h^2} = \pi r \ell$	Lateral surface area of a right circular cone
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	Distance formula
$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$	Midpoint formula
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	Quadratic formula
$S_n = \frac{n}{2} [2a_1 + (n-1)d] = \frac{n(a_1 + a_n)}{2}$	Sum of an arithmetic series
$S_n = \frac{a(1-r^n)}{1-r}$	Sum of geometric series
$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r} , r < 1$	Sum of an infinite geometric series
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Law of sines
$c^2 = a^2 + b^2 - 2ab \cos C$	Law of cosines
$(x-h)^2 + (y-k)^2 = r^2$	Equation of a circle
$(y-k)=4c(x-h)^2$	Equation of a parabola
$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	Equation of an ellipse
$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	Equation of a hyperbola